Antisense-mediated Inhibition of the plasma membrane calcium-ATPase suppresses proliferation of MCF-7 cells.
نویسندگان
چکیده
Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anti-cancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.
منابع مشابه
O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells
Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...
متن کاملAngiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells.
Here we demonstrated, by RT-PCR analysis, the expression of both angiotensin II (Ang II) receptor subtypes, AT1 and AT2, in a breast cancer epithelial cell line, MCF-7. Ang II was not able to affect the intracellular Ca2+ concentration in Fura-2 loaded cells suggesting that AT1-mediated phospholipid hydrolysis is not involved in its intracellular transduction pathway. Ang II modulated the activ...
متن کاملBcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death.
RATIONALE Modulation of the activity of sarcoendoplasmic reticulum calcium ATPase (SERCA) can profoundly affect Ca(2+) homeostasis. Although altered calcium homeostasis is a characteristic of cystic fibrosis (CF), the role of SERCA is unknown. OBJECTIVES This study provides a comprehensive investigation of expression and activity of SERCA in CF airway epithelium. A detailed study of the mecha...
متن کاملThe effect of antisense oligonucleotide treatment of plasma membrane Ca(+2)-ATPase in PC12 cells.
Plasma membrane Ca(+2)-ATPase (PMCA), encoded by four separate genes, constitutes a high affinity system extruding Ca(+2) outside the cell. The nerve growth factor-treated PC12 cell line possesses all four main PMCA isoforms. To evaluate the potential role of PMCA isoforms in the differentiation process, we transiently suppressed the expression of PMCA2 and 3 using the antisense oligonucleotide...
متن کاملInhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 29 شماره
صفحات -
تاریخ انتشار 2005